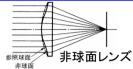
樹脂の真空プレスモールドに関する研究開発

中部大学 生産技術開発センター 鈴木浩文

- 1. アクリルレンズの直空プレス成形の背景と特徴
- 2. 真空プレス成形(解放タイプ)結果
 - 2.1 非球面レンズの成形
 - 2.2 V溝テキスチャ基板の成形
- 3. 真空プレス成形(密閉タイプ)結果
 - 3.1 基礎実験結果(成形温度,成形荷重,冷却時間,除圧温度)
 - 3.2 大口径の非球面プラスチックレンズの成形事例

4. まとめ


光学部品材料の状況

車載光学デバイス、スマートフォンなどの情報デバイス、医療光 学デバイスでは光学部品のニーズが高くなっている

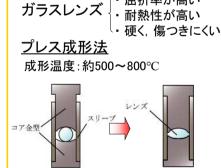
高精度化、高性能化、低コスト化が要求

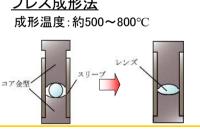
スマートフォン

デジタルカメラ 車載用工学デバイス

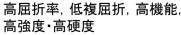
内視鏡

ガラス製レンズ 高屈折率, 低複屈折, 高強度・高硬度, 高機能 ⇔ 高コスト

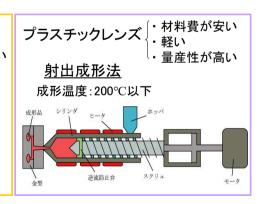

樹脂製レンズ


量産性大. 低コスト ⇒ 量的には多数を占める

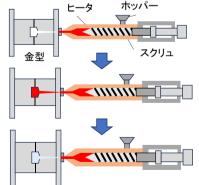
ガラス製光学部品と樹脂製光学部品の製造プロセスの比較(質



3



・屈折率が高い


量産性大. 低コスト

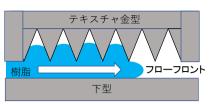
樹脂の射出成形法の問題点

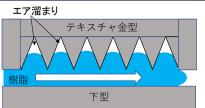
光学レンズの多数が射出成形で量産

長所

- 低成形サイクルで大量生産に有利
- ・三次元複雑形状を一工程で生産
- 転写性が良好で高精度成形可能

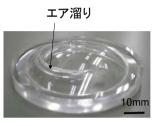
射出成形のプロセス


- (1)熱とスクリュー回転による混錬により 樹脂を溶融
- (2)金型内へ射出充填
- (3)一定の圧力を負荷・保圧し樹脂を 末端まで充填し体積収縮を補う
- (4)冷却工程
- (5)取出し


短所

- •複雑微細形状の場合. 樹脂の 完全充填が困難
- 薄肉部でウエルドラインが発生
- ・流れに伴い残留複屈折が発生
- ・少数試作にはコスト的に不向

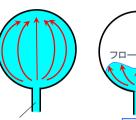
射出成形の問題点(隅に気泡が発生)

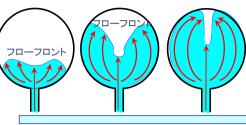


アスペクト比の大きい微細なテキスチャを 射出成形する場合

射出の高圧化しても

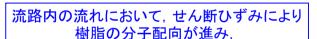
- ・先端に樹脂が流れず,
- ・エア溜まりが発生
- •転写性悪化


F


射出成形の問題点(ウェルドライン)

成形品の厚さが比較的に均一な場合

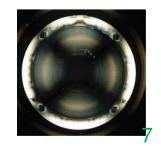
中心部が極端に薄い場合 (メニスカスレンズ)


樹脂の金型内の充填プロセス

ウェルドライン

- ・樹脂のフローフロント(表面が凝固)
- ・合流する部分の融着が不十分であるため、 ウェルドラインが発生

射出成形の問題点(複屈折の発生、光学特性の悪化)意



アスペクト比が大きい微細なテキスチャを射 出成形する場合

射出の高圧化しても

- ・先端に樹脂が流れず,
- ・エア溜まりが発生
- •転写性悪化

2025年6月13日(金) 第16回光学素子分科会

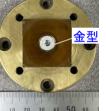
樹脂の真空プレスモールドに関する研究開発

中部大学 生産技術開発センター 鈴木浩文

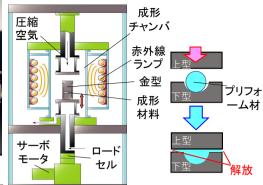
内容

- 1. アクリルレンズの真空プレス成形の背景と特徴
- 2. 真空プレス成形(解放タイプ)結果
 - 2.1 非球面レンズの成形
 - 2.2 V溝テキスチャ基板の成形
- 3. 真空プレス成形(密閉タイプ)結果
 - 3.1 基礎実験結果(成形温度,成形荷重,冷却時間,除圧温度)
 - 3.2 大口径の非球面プラスチックレンズの成形事例

4. まとめ


8

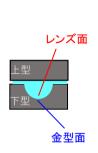
球面レンズの真空プレス成形(解放タイプ)

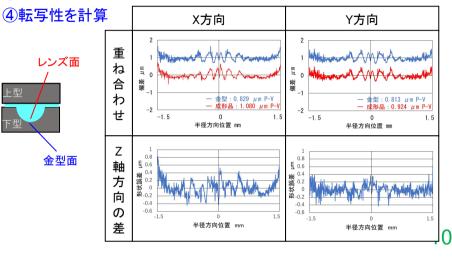


金型

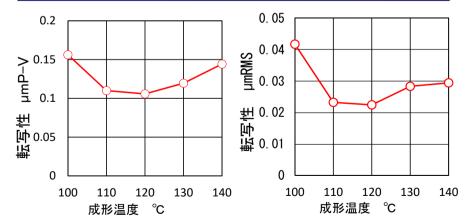
成形機の構図

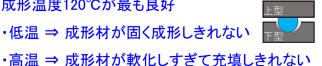
2 4 2 4 1 1		
成形材料	РММА	
球形状(直径)	Ф17.3 mm	
成形温度	100∼140 °C	
成形荷重	2.0 kN	
成形時間	10~15 分	

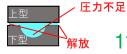

実験条件

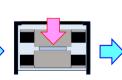

金型と成形レンズの形状誤差

- ①金型と成形レンズを非接触三次元測定装置NHで測定
- ②設計形状に対する形状誤差曲線を計算
- ③金型を上下反転させてプロット


成形温度:100℃


成形温度に対する成形転写性の変化

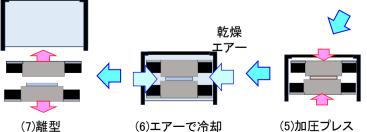



成形温度120℃が最も良好

・低温 ⇒ 成形材が固く成形しきれない

アクリル樹脂板 (1)アクリル樹脂を 金型に設置

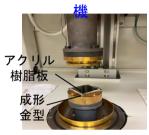
V溝テキスチャ板の真空プレス成形(解放タイプ)


排気・真空化

(2)上型降下• アクリル板に接触

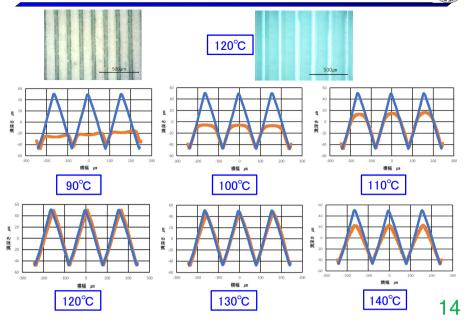
(3)内部の空気の排気 •真空化

(4)赤外線加熱・ アクリル樹脂版軟化


V溝テキスチャ真空プレス成形プロセス

V溝テキスチャ板の真空プレス成形方法

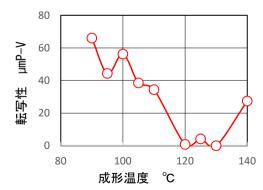
真空プレス成形


実験の様子

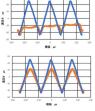
プレス条件

金型材料	6-4黄銅 □20mm	
寸法		
工具	単結晶ダイヤモンド製V型バイト	
すくい角	0°	
逃げ角	7°	
加工法	シェーパ加工	
ピッチ	150 µm	
深さ	75 µm	
成形材	アクリル樹脂板	
寸法	□40mm x 2t	
プレスカ	18 kN	
圧力	45 MPa	
プレス時間	60 s	
プレス速度	500 mm/min	
 成形温度	90°C~140°C	
離型温度	70°C	
	1	3

テキスチャの成形転写性



成形温度に対する成形転写性の変化



15

成形温度120~130℃が最も良好

- ・低温 ⇒ 成形材が固く成形しきれない
- ・高温 ⇒ 成形材が軟化しすぎて充填しきれない。

2025年6月13日(金) 第16回光学素子分科会

樹脂の真空プレスモールドに関する研究開発

中部大学 生産技術開発センター 鈴木浩文

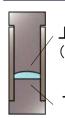
内

- 1. アクリルレンズの真空プレス成形の背景と特徴
- 2. 真空プレス成形(解放タイプ)結果
 - 2.1 非球面レンズの成形
 - 2.2 V溝テキスチャ基板の成形
- 3. 真空プレス成形(密閉タイプ)結果
 - 3.1 基礎実験結果(成形温度,成形荷重,冷却時間,除圧温度)
 - 3.2 大口径の非球面プラスチックレンズの成形事例
- 4. まとめ

密閉型のプレス成形事例

1. 密閉型の成形基礎実験

平面型と球面型を用いて成形条件を変化させてプレス 成形を行い、得られたレンズの形状精度を評価する.



2. 大口径の非球面プラスチックレンズの成形事例 非球面金型を用いて大口径のプラスチックレンズ成形 を行い、形状精度、複屈折などを評価する.

17

密閉型の成形基礎実験

上型 (球面:曲率半径R=30mm)

による比較

下型(平面)

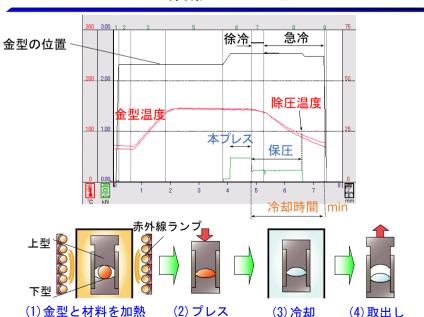
成形前

成形後

成形実験に用いた金型

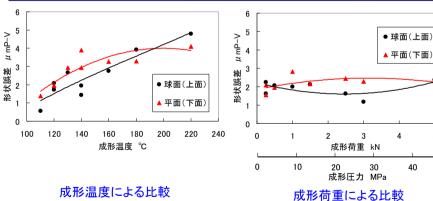
実験内容

- ① 成形温度
- ② 成形荷重
- 冷却時間
- 4 除圧温度


プレス条件 アクリル (PMMA) 成形材料 プリフォーム形状 球形状 外径 φ10 mm 荷重たわみ温度 87~100 °C 成形温度 110~220 °C 成形荷重 0.25~5 kN 成形速度 10 mm/min 冷却時間 5.5~11.5 min 除圧温度 50~90 °C

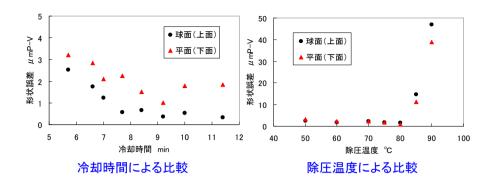
18

プレス成形のプロセス



19

成形温度、荷重による形状精度の変化



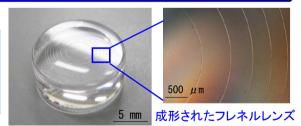
- ・成形温度が低くなるほど形状誤差および平面度は 改善され、110℃で最も良好
- ・成形荷重を変化させても形状誤差および平面度に 顕著な変化は見られない

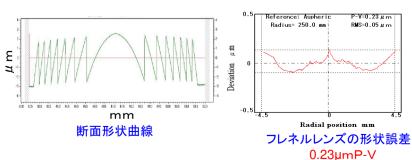
冷却時間、除圧温度による形状精度の結果

- ・冷却時間を長くすると形状誤差と平面度は改善される
- ・85~90°C (アクリルの荷重たわみ温度) の温度で除圧 すると、形状精度および平面度は大幅に悪化した.

21

非球面レンズの形状精度と表面知さ


平面側(研磨面)の表面粗さ:10nmRz 非球面(研削面)の表面粗さ:19nmRz 22


プラスチック製のフレネルレンズ成形

23

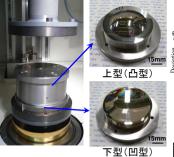
く成形条件> 成形温度:110 ℃ 成形荷重:0.5 kN 除圧温度:60 ℃ 冷却時間:9分

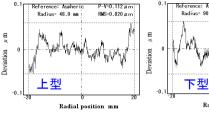
エッジ部もシャープな形状が転写

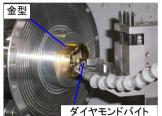
2025年6月13日(金) 第16回光学素子分科会

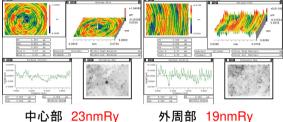
樹脂の真空プレスモールドに関する研究開発

中部大学 生産技術開発センター 鈴木浩文

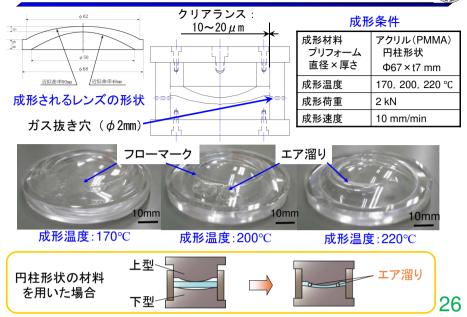

- 1. アクリルレンズの真空プレス成形の背景と特徴
- 2. 真空プレス成形(解放タイプ)結果
 - 2.1 非球面レンズの成形
 - 2.2 V溝テキスチャ基板の成形
- 3. 真空プレス成形(密閉タイプ)結果
 - 3.1 基礎実験結果(成形温度,成形荷重,冷却時間,除圧温度)
 - 3.2 大口径の非球面プラスチックレンズの成形事例


4. まとめ


非球面金型の超精密切削



形状誤差曲線


-----金型加工の外観

非球面金型の表面粗さ

25

アクリル平板からの成形試作結果

ニアネットシェイプの材料を用いた成形実験

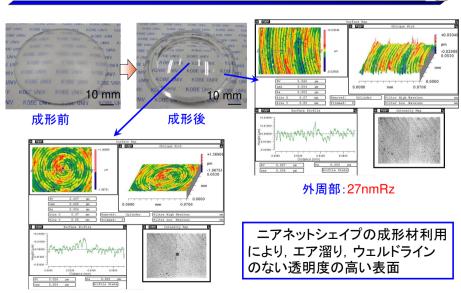
成形材料下面と下型との間に空気が閉じ込められ、フローマークやエア溜りが発生

ニアネットシェイプ材料を 用いることで改善を検討

ニアネットシェイプの 材料を用いた場合

エア溜りが 防止できる

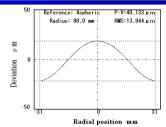
アクリルの物性値


7 7 770 V7 173 1-11E			
比重	1. 19		
引張強さ	67 MPa		
ヤング率	3100 MPa		
熱伝導率	0. 2 W/mK		
熱膨張係数	$50 \sim 90 \times 10^{-6} \text{ K}^{-1}$		
屈折率	1. 5		

成形条件

724/12/11				
成形材料 プリフォーム形状 直径×厚さ 曲率半径(下面)	アクリル (PMMA) ニアネットシェイプ Φ67×10.3 mmt R=88 mm			
成形温度	170, 185, 200 °C			
除圧温度	75 ℃			
成形荷重	3, 5, 7 kN			
成形速度	10 mm/min			

実験結果



中心部:26nmRz

28

形状精度および複屈折の評価

レンズ上面(凸面)の形状誤差: 40µmP-V

<複屈折(残留応力)の評価>

射出成形後

プレス成形後

Reference: Aspheric P-V=18.733 µm; Radius= 48.0 mm RMS=5.499 µm -50 Radial position mm

レンズ下面(凹面)の形状誤差 19umP-V

- ・レンズ両面とも軸対称な形状
- ・射出成形よりプレス成形で作製した方が複屈折、残留応力が低減

まとめ

プラスチック製光学部品の射出成形の問題点と課題を考察し、 真空プレス成形について検討し比較した.

- (1) 射出成形法の長所:
 - ・射出成形は低成形サイクルで大量生産に有利
 - ・三次元複雑形状を一工程で生産できる
 - 転写性が良好で高精度成形可能
- (2) 射出成形法の問題点・課題:
 - ・複雑微細形状の場合、樹脂の完全充填が困難
 - ・薄肉部でウエルドラインが発生しやすい
 - ・粘性流体の流れに伴い残留複屈折が発生
 - ・少数試作にはコスト的に不向き
- (3) 真空プレス成形では:
 - ・複雑微細形状の場合も樹脂の完全充填がしやすい
 - ・薄肉部もウエルドラインが発生しにくい
 - ・粘性流体の流れに伴う残留複屈折が発生しにくい
 - ・少数試作にも低コスト対応が可能
- (4) 成形温度、成形荷重などの成形条件、プログラムをシミュレーションに基づいた効率化を期待する. 30

29