

弾性率測定について

~種々のガラス材料の動的粘弾性~

産業技術総合研究所ナノ材料研究部門 北村 直之

1

講演内容

研究背景 ~成形用ガラス開発から粘弾性解析へ~ ガラス融体のダイナミクスについて 種々のガラスの動的(粘)弾性率測定

1. 研究の背景

~成形用ガラス開発から粘弾性解析へ~

<u>ガラス表面への微細(サブ波長)構造のモールド成形</u>

- ✓ Passiveな光学素子(レンズ)から Activeな光学素子(DOE等)へ
- √ 光学素子製造のための省プロセス

研究の背景

~成形用ガラス開発から粘弾性解析へ~

1. 研究の背景

~成形用ガラス開発から粘弾性解析へ~

①ガラス成形用金型の研究開発

…回折光学素子や反射防止構造付与 …金型表面のパターニング技術・エッチング

✓ 機械加工によらない光学レベル表面の微細形状
 →パターニング技術:マスクレス露光・UVインプリント
 →エッチング技術:耐熱材料(SiC, GC, SiO₂)の傾斜加工

~成形用ガラス開発から粘弾性解析へ~

②モールド成形用ガラスの開発

✓低Tg・高屈折率ガラスの開発

リン酸塩系、ホウ酸塩系(屈伏点<400℃, n_d>1.8)

✓赤外線透過ガラスの開発

低毒性イオウ系カルコゲナイドガラス

✔低膨張ガラスの開発

ホウケイ酸塩系ガラス

ビスマスリン酸塩(ホウ酸塩)ガラス開発

<u>イオウ系カルコゲナイドガラス開発</u>

1. 研究の背景

~成形用ガラス開発から粘弾性解析へ~

ガラス成形における課題 どのようなガラス素材が良いのか?

ビスマス亜鉛リン酸塩ガラス (日本山村硝子との共同研究)

研究の背景

~成形用ガラス開発から粘弾性解析へ~

研究の背景

~ 成形用ガラス開発から粘弾性解析へ~

一軸圧縮法よりも広い時間スケールで緩和現象(構造緩和機構)を見てみたい! 種々のガラス材料の動的粘弾性解析

2. ガラス融体のダイナミクスについて 高分子と無機ガラスは相違点は?

Macromolecular Polymer

- Shear deformation (intermolecular bonds)
 Tensile and buckling deformation
- Decomposition (irreversible)

Inorganic Glass

2. ガラス融体のダイナミクスについて

液体の緩和現象

2. ガラス融体のダイナミクスについて

液体の緩和現象と観察手段

弾性率の測定手法

弾性率測定に関するJIS規格

- JIS Z 2280(金属材料のヤング率)
- ・ JIS R 1602(ファインセラミックの弾性率試験方法:曲げ試験@室温)
- ・ JIS R 1605(ファインセラミックの高温弾性率試験方法:超音波法@室温~高温)

両端保持振動法の詳細

1. 種々のガラスの動的(粘)弾性率測定 両端保持振動法: PMMAの例

3. 種々のガラスの動的(粘)弾性率測定酸化物およびカルコゲン化物ガラスの動的粘弾性

- 1. R_2 O-SiO₂系ガラス(R=Li,Na)
- 2. $R_2O(MO)-AI_2O_3-P_2O_5$ 系ガラス(R=Na,K,Rb/M=Mg,Ca,Sr,Ba)
- 3. 市販光学ガラス
- 4. Ge-Sb-Se系ガラス

R₂O-SiO₂系ガラス

N. Kitamura, J. Ceram. Soc. Jpn. 125, 721-727 (2017)

Fig. Relaxation shear moduli of $Na_2O-2SiO_2$ and $Li_2O-2SiO_2$ glasses.

$R_2O-SiO_2系ガラス$

N. Kitamura, J. Ceram. Soc. Jpn. 125, 721-727 (2017)

R₂O-SiO₂系ガラス

N. Kitamura, J. Ceram. Soc. Jpn. 125, 721-727 (2017)

Fig. Internal friction of binary alkali silicate glasses below 400 °C. [J. Shelby and D.E. Day, J. Am. Ceram. Soc(1969)]

Fig. Temperature dependence of storage and loss modulus of $Na_2O-2SiO_2$ and $Li_2O-2SiO_2$ glasses.

Fig. Master curve of storage and loss modulus of some glasses against frequency.

Fig. Temperature dependence of E'(ω) and E"(ω) of NaPO₃-Al (PO₃)₃ and MgPO₃-Al(PO₃)₃ near the deformation temperature

国立研究開発法人產業技術総合研究所

R₂O(MO)-Al₂O₃-P₂O₅系ガラス N. Kitamura et al., J. Non-Cryst. Solids 591, 120441 (2022)

Fig. Master curves of $E'(\omega)$ and $E''(\omega)$ for alkali and alkaline earth aluminophosphate.

Fig. Shift factors of the subprocess in E'(w) and E''(w)alkali aluminoof phosphate glasses plotted against the reciprocal of temperature.

E"(w)

Fig.

and

the

temperature.

Fig. Shift factors of the subprocess in E(w) and E'(w) of alkaline aluminoearth phosphate glasses plotted against the reciprocal of temperature.

against

E'(w)

plotted

$R_2O(MO)-AI_2O_3-P_2O_5$ 系ガラス N. Kitamura et al., J. Non-Cryst. Solids 591, 120441 (2022)

(1 - x)RPO ₃ -xAl(PO ₃) ₃		ΔH_{η}	$\Delta H_{ m Gt}$	$\Delta H_{<\mathrm{Tg}}$	$\Delta H_{>Tg}$	$\Delta H_{ m sub}$	$\Delta H_{ m sum}$
R	x	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
Li	0.2			-		-	-
	0.4	1000	1 		-		
	0.6	-	-	-	-	-	-
Na	0.2	718 ± 13	595 ± 8	159 ± 5	233 ± 6	38 ± 2	430
	0.4	761 ± 14	618 ± 5	169 ± 8	311 ± 4	18 ± 1	498
	0.6	774 ± 13	698 ± 30	177 ± 10	317 ± 14	35 ± 4	512
K	0.2	614 ± 17	543 ± 26	139 ± 12	221 ± 4	11 ± 1	371
	0.4	751 ± 8	589 ± 8	160 ± 9	290 ± 5	27 ± 1	477
	0.6	830 ± 39	682 ± 23	176 ± 4	359 ± 18	32 ± 3	567
Rb	0.2	622 ± 9	489 ± 10	83 ± 1	227 ± 4	39 ± 2	304
	0.4	660 ± 17	550 ± 16	102 ± 11	253 ± 11	29 ± 2	384
	0.6	771 ± 13	599 ± 33	126 ± 7	363 ± 8	55 ± 4	544
(1 - y)M(PO ₃) ₂	yAl(PO ₃) ₃	ΔH_{η}	ΔH_{Gt}	$\Delta H_{<\mathrm{Tg}}$	$\Delta H_{>T_8}$	ΔH_{sub}	$\Delta H_{ m sum}$
(1 - y)M(PO ₃) ₂ M	yAl(PO ₃) ₃ y	ΔH_{η} (kJ/mol)	ΔH _{Gt} (kJ/mol)	ΔH _{<tg< sub=""> (kJ/mol)</tg<>}	$\Delta H_{>T_8}$ (kJ/mol)	ΔH _{sub} (kJ/mol)	∆H _{sum} (kJ/mol)
$\frac{(1 - y)M(PO_3)_2}{M}$	yAl(PO ₃) ₃ y 0.2	$\frac{\Delta H_{\eta}}{(\text{kJ/mol})}$ 807 ± 19	$\frac{\Delta H_{Gt}}{(kJ/mol)}$ 587 ± 6	$\frac{\Delta H_{< T_8}}{(\text{kJ/mol})}$ 169 ± 9	$\frac{\Delta H_{>T_8}}{(\text{kJ/mol})}$ 306 ± 2	ΔH _{sub} (kJ/mol) 111 ± 10	ΔH _{sum} (kJ/mol) 586
(1 - y)M(PO ₃) ₂ M Mg	yAl(PO ₃) ₃ y 0.2 0.4	$\begin{array}{c} \Delta H_{\eta} \\ (\text{kJ/mol}) \end{array}$ 807 ± 19 777 ± 14	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \end{array}$ $\begin{array}{c} 587 \pm 6 \\ 589 \pm 17 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{Tg}} \\ (\mathrm{kJ/mol}) \end{array}$ 169 \pm 9 163 \pm 4	$\begin{array}{c} \Delta H_{>T_8} \\ (\text{kJ/mol}) \end{array}$ $\begin{array}{c} 306 \pm 2 \\ 410 \pm 22 \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \end{array}$ 111 ± 10 88 ± 30	ΔH _{sum} (kJ/mol) 586 661
(1 - y)M(PO ₃) ₂ M Mg	yAl(PO ₃) ₃ y 0.2 0.4 0.6	ΔH_{η} (kJ/mol) 807 ± 19 777 ± 14 739 ± 22	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \end{array}$	$\Delta H_{< T_8}$ (kJ/mol) 169 \pm 9 163 \pm 4 168 \pm 20	$\Delta H_{>T_8}$ (kJ/mol) 306 ± 2 410 ± 22 389 ± 17	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \\ 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \end{array}$	ΔH _{sum} (kJ/mol) 586 661 688
(1 - y)M(PO ₃) ₂ M Mg Ca	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \\ \hline 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ \\ 582 \pm 20 \\ \\ 711 \pm 14 \end{array}$	$\Delta H_{(kJ/mol)169 ± 9163 ± 4168 ± 20201 ± 10$	$\Delta H_{>T_8}$ (kJ/mol) 306 ± 2 410 ± 22 389 ± 17 340 ± 5	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \\ 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \end{array}$	ΔH _{sum} (kJ/mol) 586 661 688 607
(1 - y)M(PO ₃) ₂ M Mg Ca	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \\ 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ \\ 582 \pm 20 \\ \\ 711 \pm 14 \\ 698 \pm 17 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{kJ/mol}) \end{array}$ 169 \pm 9 163 \pm 4 168 \pm 20 201 \pm 10 173 \pm 7	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \\ 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690
(1 - y)M(PO ₃) ₂ M Mg Ca	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.4 0.6	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \\ 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{kJ/mol}) \end{array}$ 169 \pm 9 163 \pm 4 168 \pm 20 201 \pm 10 173 \pm 7 164 \pm 6	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \\ 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690 692
(1 - y)M(PO ₃) ₂ M Mg Ca Sr	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \\ \hline 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \\ 972 \pm 11 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ 743 \pm 13 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{kJ/mol}) \end{array}$ 169 \pm 9 163 \pm 4 168 \pm 20 201 \pm 10 173 \pm 7 164 \pm 6 224 \pm 4	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ 349 \pm 4 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \hline 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \\ 84 \pm 1 \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690 692 657
(1 - y)M(PO ₃) ₂ M Mg Ca Sr	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \hline 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \\ 972 \pm 11 \\ 881 \pm 7 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ 743 \pm 13 \\ 713 \pm 8 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{k}\mathrm{J/mol}) \end{array} \\ \hline 169 \pm 9 \\ 163 \pm 4 \\ 168 \pm 20 \\ 201 \pm 10 \\ 173 \pm 7 \\ 164 \pm 6 \\ 224 \pm 4 \\ 154 \pm 3 \end{array}$	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ 349 \pm 4 \\ 413 \pm 14 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \\ 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \\ 84 \pm 1 \\ 96 \pm 6 \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690 692 657 663
(1 - y)M(PO ₃) ₂ M Mg Ca Sr	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \hline \\ 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \\ 972 \pm 11 \\ 881 \pm 7 \\ 867 \pm 10 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ 743 \pm 13 \\ 713 \pm 8 \\ 700 \pm 16 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{k}\mathrm{J/mol}) \end{array} \\ \hline 169 \pm 9 \\ 163 \pm 4 \\ 168 \pm 20 \\ 201 \pm 10 \\ 173 \pm 7 \\ 164 \pm 6 \\ 224 \pm 4 \\ 154 \pm 3 \\ 149 \pm 1 \end{array}$	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ 349 \pm 4 \\ 413 \pm 14 \\ 379 \pm 18 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \hline 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \\ 84 \pm 1 \\ 96 \pm 6 \\ 148 \pm 12 \\ \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690 692 657 663 676
(1 - y)M(PO ₃) ₂ M Mg Ca Sr Ba	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \hline \\ 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \\ 972 \pm 11 \\ 881 \pm 7 \\ 867 \pm 10 \\ 888 \pm 10 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ 743 \pm 13 \\ 713 \pm 8 \\ 700 \pm 16 \\ 756 \pm 18 \end{array}$	$\begin{array}{c} \Delta H_{< T_8} \\ (kJ/mol) \end{array} \\ \hline 169 \pm 9 \\ 163 \pm 4 \\ 168 \pm 20 \\ 201 \pm 10 \\ 173 \pm 7 \\ 164 \pm 6 \\ 224 \pm 4 \\ 154 \pm 3 \\ 149 \pm 1 \\ 187 \pm 4 \end{array}$	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ 349 \pm 4 \\ 413 \pm 14 \\ 379 \pm 18 \\ 464 \pm 16 \\ \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \hline 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \\ 84 \pm 1 \\ 96 \pm 6 \\ 148 \pm 12 \\ 173 \pm 14 \\ \end{array}$	Δ <i>H</i> _{sum} (kJ/mol) 586 661 688 607 690 692 657 663 676 824
(1 - y)M(PO ₃) ₂ M Mg Ca Sr Ba	yAl(PO ₃) ₃ y 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4	$\begin{array}{c} \Delta H_{\eta} \\ (kJ/mol) \\ \\ \hline 807 \pm 19 \\ 777 \pm 14 \\ 739 \pm 22 \\ 879 \pm 7 \\ 867 \pm 12 \\ 832 \pm 27 \\ 972 \pm 11 \\ 881 \pm 7 \\ 867 \pm 10 \\ 888 \pm 10 \\ 862 \pm 12 \\ \end{array}$	$\begin{array}{c} \Delta H_{Gt} \\ (kJ/mol) \\ \\ \hline 587 \pm 6 \\ 589 \pm 17 \\ 582 \pm 20 \\ 711 \pm 14 \\ 698 \pm 17 \\ 623 \pm 13 \\ 743 \pm 13 \\ 713 \pm 8 \\ 700 \pm 16 \\ 756 \pm 18 \\ 736 \pm 26 \end{array}$	$\begin{array}{c} \Delta H_{<\mathrm{T}_8} \\ (\mathrm{kJ/mol}) \end{array} \\ \hline 169 \pm 9 \\ 163 \pm 4 \\ 168 \pm 20 \\ 201 \pm 10 \\ 173 \pm 7 \\ 164 \pm 6 \\ 224 \pm 4 \\ 154 \pm 3 \\ 149 \pm 1 \\ 187 \pm 4 \\ 152 \pm 11 \end{array}$	$\begin{array}{c} \Delta H_{>T_8} \\ (kJ/mol) \\ \hline 306 \pm 2 \\ 410 \pm 22 \\ 389 \pm 17 \\ 340 \pm 5 \\ 378 \pm 13 \\ 427 \pm 13 \\ 349 \pm 4 \\ 413 \pm 14 \\ 379 \pm 18 \\ 464 \pm 16 \\ 436 \pm 11 \\ \hline \end{array}$	$\begin{array}{c} \Delta H_{sub} \\ (kJ/mol) \\ \hline 111 \pm 10 \\ 88 \pm 30 \\ 131 \pm 10 \\ 66 \pm 2 \\ 139 \pm 7 \\ 101 \pm 3 \\ 84 \pm 1 \\ 96 \pm 6 \\ 148 \pm 12 \\ 173 \pm 14 \\ 125 \pm 17 \\ \end{array}$	ΔH_{sum} (kJ/mol) 586 661 688 607 690 692 657 663 676 824 713

R₂O(MO)-Al₂O₃-P₂O₅系ガラス N. Kitamura et al., J. Non-Cryst. Solids 591, 120441 (2022)

Fig. Temperature dependence of E'(ω) and E"(ω) of NaPO₃-AI (PO₃)₃ and MgPO₃-AI(PO₃)₃ near the deformation temperature

3. 種々のガラスの動的(粘)弾性率測定 R₂O(MO)-Al₂O₃-P₂O₅系ガラス

Fig. Energy diagram (Activation energy and bond dissociation energy) of alkali aluminophosphate glasses

Fig. (left) Temperature dependence of storage elastic modulus, E', at 0.01, 1 and 100Hz, and (right) master curves (T=Tg) of the E' and E" for the Ge₂₀Sb₁₅Se₆₅ glass.

カルコゲナイドガラス

reciprocal temperature.

カルコゲナイドガラス

Band/cm ⁻¹	Assignment
148	Se-Se bending vibration(138-145)
170	Sb-Sb homopolar bond(~160)
	Ge-Ge homopolar bond(~170)
182	corner-shared polyhedra(174)
	$Se_3Ge-GeSe_3$ (175)
194	Ge(Sb)-Se in the corner-shared polyhedra(192)
	Ge(Sb)-Se in the edge-shared polyhedra(200)
209	A_{1}^{c} breathing mode in $Ge_{2}Se_{8/2}$ (215)
	edge-shared GeSe ₄ (215)
267	Se-Se in Se _n chains and ring(235-245)
	Se-Se in dimer, short-chain(265)
	F₂ asymmetric in GeSe₄(~285-300)
396	?

Fig. Normalized Raman scattering spectra of Ge₂₀Sb₁₅Se₆₅ glass at high temperatures [Tg=245 °C, At=282 °C] and the assignments of the peaks.

まとめ

動的(粘)弾性率測定で何が見えそうか?

- 1. 低温から軟化温度近傍までのダイナミクスをエネルギー論的に解釈できる
 →特に、マクロな変形がない低温での現象(内部摩擦、遅延弾性)も見える
- クリープ試験による粘弾性解析と合わせるとより高温での解釈が可能
 →構造解析を伴わせることで粘弾性体のダイナミクスがより明確になる
- 3. 転移点近傍での変形速度依存の弾性挙動が明確になる
- 4. ある種のガラス成分は遅いダイナミクスを引き起こすことがわかってきた
 →緩和の早い(流動性の良い)モールド成形に適したガラスの開発に役立てられる
 *原因はまだよくわからない