

V-Glace開発成果報告 および事例紹介

インテグレーションテクノロジー(株) 理研、ガラス成形・光学シミュレーション研究チーム 石山英二

内容

- □背景
- ロV-Glaceの開発状況
- ロGMシミュレーションシステム「V-Glace」
- □事例紹介
- ロチュートリアルセミナーの紹介(アイ・フォース今田さん)

背景

GMとGMシミュレーションの問題点

研究開発の概要

ガラスレンズは、プラスチックに比べ、耐候性や光学性能が優れているが、製造は困難。

- ①高温での成形が必要なガラスプレス成形では、金型設計・製作後の成形トライ·金型修 正・成形条件探索の繰り返しに多くの時間・コストが掛かる。
- ②シミュレーションによる効率化が求められているが、ソフトウェアは上市されていない。

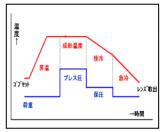
←通常3カ月→

レンズ 設計

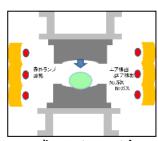
金型 設計

金型 製作

成形 トライ


成形条件変更 プリフォーム変更 金型修正•••

工場 移管


1カ月以下に短縮

金型製作

成形条件

成形イメージ

ヘッドアップ ディスプレイ

スマートウォッチ

自動運転

理研VCADプロジェクト(2001-2011)の成果を元にして、ガラス物性を組み込むことにより、 粘弾性・構造緩和といったガラス物性を根本からシミュレートする、ガラス専用のシミュ レーションソフトウェアを開発する。

ガラスレンズ製造方法の課題

- ロ研削・研磨で作る
 - □球面レンズの場合:一度に大量加工ができる優れた方法
 - ロ非球面レンズの場合:超精密加工機で1個ずつ製造→効率悪い
 - □廃棄物が多い→削り屑、研磨剤、砥石
- ロプレス成形(ガラスモールド)で作る
 - □金型を超精密加工機で製作する
 - 口金型を使って、成形機(プレス機)で1個ずつ製造
 - →加熱・冷却プロセスがあるので、とても効率がいいとは言えない
 - →多段式の成型機を使うと連続的に成形できるので、効率はまあまあ
 - →小さなものなら、多数個取り金型を使うことで、複数同時成形もできる
 - □製造工程で廃棄物は出ない

ガラスモールド (GM) で製造したい

GMの課題

- □金型の問題:重い(扱いづらい)硬い(加工が困難)高価(試行錯誤に不向き)
 - **□**高温(600~700°C)に耐える必要があるため特殊な材料を使う
 - →超硬合金、SiC、など
- □工程の問題:成形条件の決定・最適化、問題点の解決が難しい
 - □高温の温度制御が難しい
 - □割れる、きれいに伸びない
 - 口熱収縮のため形状が歪んで、設計どおりの光学性能が出ない
 - □残留応力のため屈折率が変わって、設計どおりの光学性能が出ない
 - □金型内のガラスは見えないので、いつ・どこで問題が発生したか分からない

シミュレーションを使って、成形条件の決定・最適化をしたい

GMシミュレーションの課題

- ロガラスの物性が複雑:考慮すべき物理現象が多い
 - □粘弾性、構造緩和、・・・
 - 口応力、熱膨張・熱収縮、摩擦、金型への融着、・・・
- ロガラスの種類が多い:
 - ロガラス材料メーカーも多い
 - ロプレス成形用ガラス材料ラインナップも多い

- ロガラス専用のシミュレーションソフトウェアが無い
 - 口市販の汎用シミュレーションソフトを使っている場合が多い
 - ロガラス物性の計算式が実装されていない
 - ロガラス物性値が分からない

ガラス専用のシミュレーションソフトウェアが期待される

GMとSDGs

12 つくる責任 つかう責任

【持続可能な消費と生産】

ガラスモールドは、製造時に廃棄物を出さない ガラスモールドは、レアメタル(酸化セリウム)を使わない

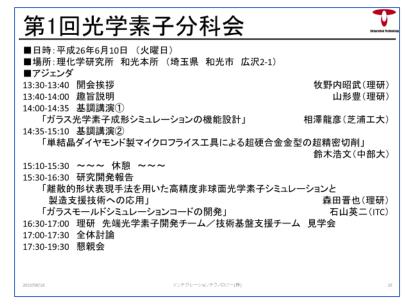
全業と技術革新の 基盤をつくろう

【インフラ、産業化、イノベーション】 ガラスモールドで製造した非球面レンズ・自由曲面ガラスを用いることで、光学素子の性能が向上する

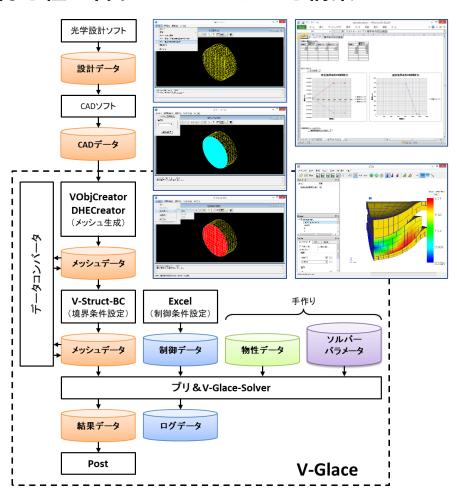
働きがいも 経済成長も

【経済成長と雇用】

ガラスモールドシミュレーションを用いることで、勘と経験が必要だったGM工程の様々な条件出しができるので、ガラスモールドを使いやすくなる



V-Glace開発状況


2017年以前

- ロVCADシステム研究プログラムの成果物を組み合わせてシステムを構築
- 口2014年、光学素子分科会発足

□2015年、最初の評価版リリース

V-Struct

- ロ理研のVCADシステム研究プログラム(2001~2011)で開発された弾塑性構造解析ソフトウエア
 - ロ理研がソースコード著作権を保有
 - ロ実行プログラムは無償で一般公開中

□機能

- □静的陽解法ソルバー
- □四面体、六面体、ピラミッド、プリズム、縮退六面体、 複合要素に対応
- □縮退六面体メッシュにより体積ロッキング現象を回避し、 大変形の弾塑性解析が可能
- □様々な要素タイプによる非線形構造解析、塑性加工シ ミュレーションが可能

□展開

- ロ先端力学シミュレーション研究所:ASU/P-form
- ロトライアルパーク:TP-STRUCT など

2017年4月

- ロガラス成形・光学シミュレーション研究チーム発足
 - □産業界との融合的連携研究制度
 - □5年間の時限プロジェクト
 - □理研とITCの共同研究
 - □製品化のための実用化研究開発を行う
 - ロガラス成形シミュレーション: V-Glace
 - ロ光線追跡シミュレーション:V-Opt Suite

ロメンバー

ロチームリーダー: 石山英二(ITC)

ロ副チームリーダー: 山形豊 (理化学研究所)

□研究員: 中林啓司、永田裕作(理化学研究所)

□客員研究員: 森田晋也(東京電機大学)

相澤龍彦(表面機能デザイン研究所、芝浦工業大学)

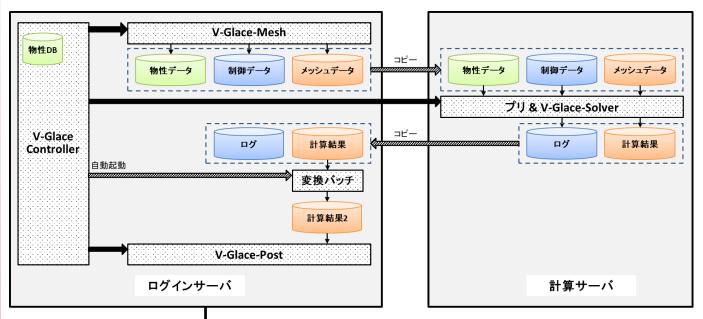
福田達也(東海エンジニアリングサービス)

福山聡 (芝浦機械)

船田浩良、山田和夫、武安裕一(ITC)

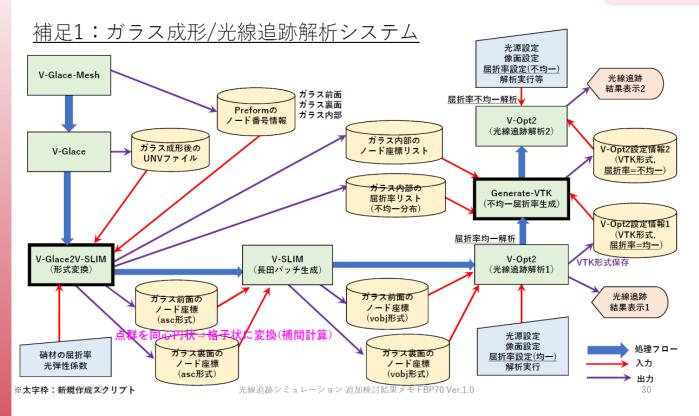
研究開発項目

	H29	H30	H31 / R1	R2	R3
ソルバー	動作上の不安定要因の解析と対策:主に接触処理の改良・ロバスト化 処理時間の短縮、演算の高速化				
制御方式	実用的な成形条件の実装・多様化:例えば荷重制御、輻射加熱、空冷など				
メッシュ	良質な六面体メ	ソッシュの生成			
システム化	統一的で操作性	生の良いユーザー	-インターフェイ		メニスカスレンズ成形 「 ¹² 「
物性測定	熱伝達係数、摩		可法の確立 川定と、物性デー	タベースの構築	1 0.8 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
評価	ユーザ評価			ラマン	スペクトルと構造緩和
光学ソフト連 携	光学設計ソフト プラグインの開		/、ZEMAXなどと	どの連携強化	
					ZEMAXとV-Opt2


研究開発実績

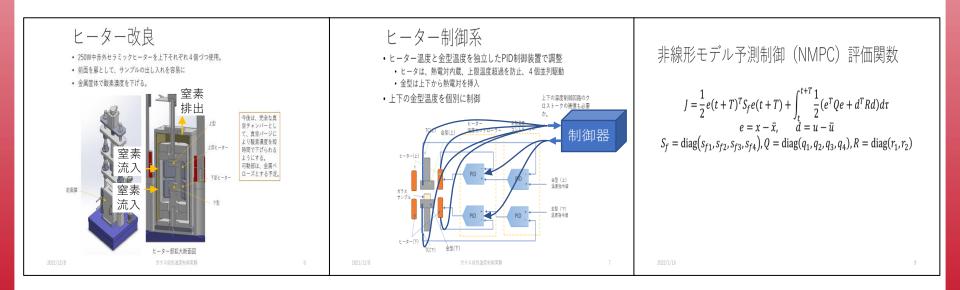
	H29	H30	H31 / R1	R2	R3
ソルバー	コード精査	高速化	接触問題解決 高速化②	接触解析高度化	接触解析高度化
制御方式		荷重制御検討 輻射加熱検討	荷重制御試作	初期温度分布の 導入	制御高度化検討
メッシュ	六面体メッシャ ー導入	ボールレンズ メニスカスレン ズ	薄板 リング圧縮	スマホガラス レンズアレイ スリーブ構造	360度モデル 芯ずれ構造 カスタムモデル
システム化	簡易GUI導入		GUI統合	制御入力GUI グラフ強化	情報表示 クラウド化試作
物性測定	手法検討	実験装置導入	粘弾性測定 摩擦係数測定	硝材5種測定	物性DB構築 構造緩和測定
評価		試用版評価 成形機導入	試用版評価② 成形実験	β版評価 チュートリアル	形状誤差評価 熱収縮評価 ダイレクトプレ ス適用検討
光学ソフト連携					成形〜光学性能評価フロー試作
事業化			販売準備	マニュアル作成	販売開始

R3の主な開発①クラウド化試作



- ・システム試作とフィージビリティテストを実施
- ・スケーラビリティ:モデルデータの規模、希望計算 時間に応じて、計算サーバのスペックを選択できる
- ・セキュリティ:ユーザ対外部、ユーザ同士、ユーザ 対システム

R3の主な開発②光学ソフト連携試作



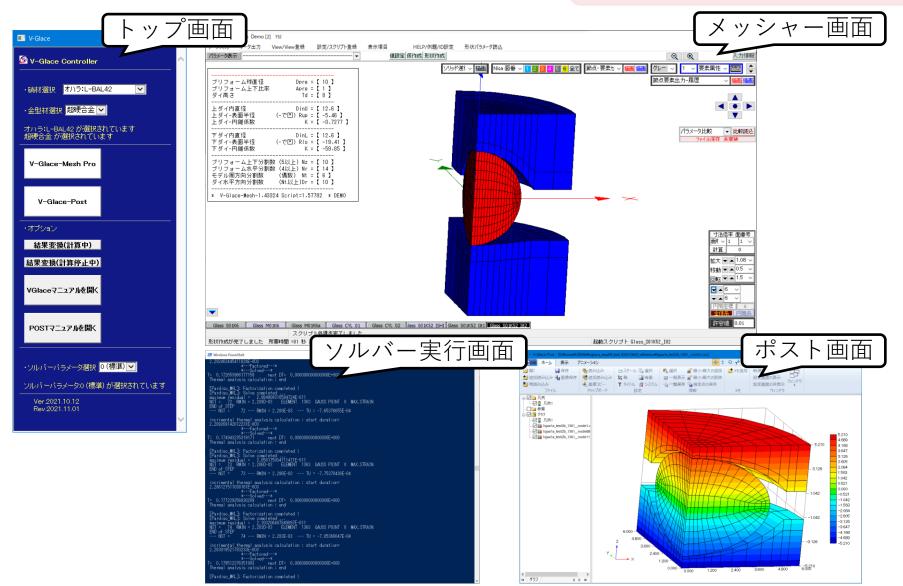
- ・V-Glace、V-Slim2、V-Opt2による局所形状誤差と内部屈折率分布を考慮した光 学性能評価フローを試作
- ・V-Glace-Meshの節点構成(放射状)が、V-Slim2の異方性圧縮と相性が良くない
- ・継続検討する

R3の主な開発③制御高度化検討

- 口成形機の温度制御・プレス制御ロジックに制御対象のモデルを組込み、高度化する
 - □加熱時間の短縮
 - 口温度一定性・一様性の向上、などをねらう
- □現行のガラス物性試験装置のヒーター加熱制御部を改造し、原理検証を行う
 - ロPID温度制御を、最新の現代制御理論のモデル予測制御(MPC)で作り直す
 - □MPCアルゴリズムを制御器に組み込み、試験装置のヒーター温度を制御する
 - ロ(協力:京都大学 大学院情報学研究科 システム科学専攻 大塚敏之先生)

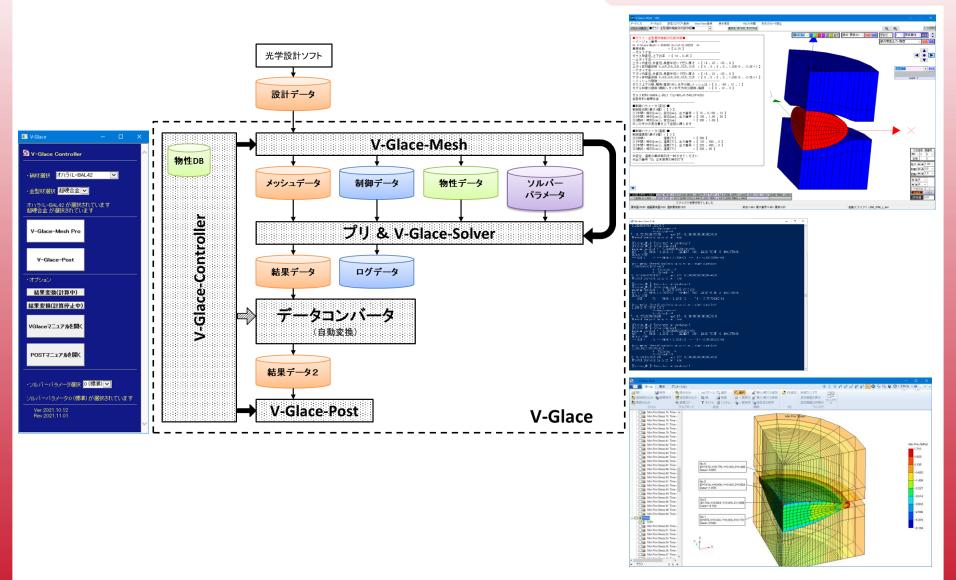
R3の主な開発④ダイレクトプレス検討

- ロポイント:リヒートプレスに比べ、遥かに高い温度からプロセスが開始する
- □軟化点よりも高温領域の取り扱い
 - □極度に粘度の小さい固体として解析を行う
 - 口物性データは、軟化点~屈伏点~転移点の数値を外挿して用いる
 - □※特に、粘性については、測定値を温度を含む式でフィッティングして決定しているため、信頼性高く外挿ができる
- ロガラスの初期条件(形状、温度)の設定
 - ロ大まかに設定する
 - ロ形状:潰れた楕円体
 - □温度:炉内よりも少し温度が下がった状態
- □事例
 - 口企業・東京電機大・理研の共同研究でトライアル中


GMシミュレーションシステム「V-Glace」

概要

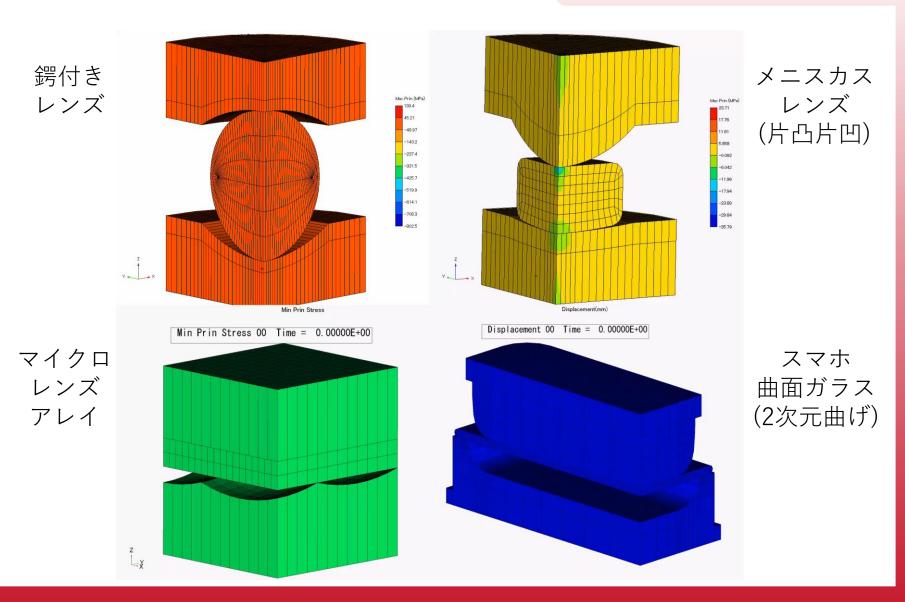
2022/03/08 第11回光学素子分科会 19


V-Glace

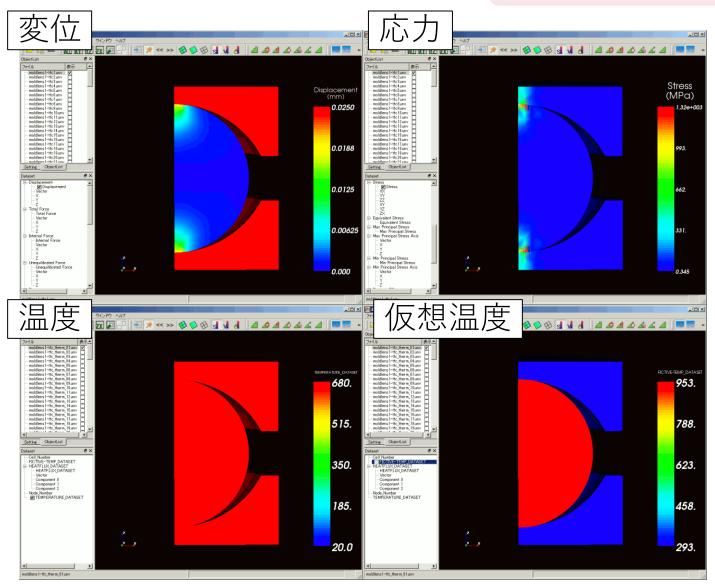
V-Glaceのシステム構成

V-Glaceの特長

- ロソルバー
 - □三次元ソルバー
 - ロ構造解析と熱解析の連成解析
 - □六面体メッシュと静的陽解法有限要素法ソルバーによる、大変形でも安定な計算
 - ロガラス物性をサポート
 - □粘弾性構成則(温度依存に拡張したNorton則)
 - □熱膨張
 - □金型の弾性変形を考慮した変形体接触をサポート
 - □金型−ガラス間の摩擦のサポート
 - ロ構造緩和解析による仮想温度評価(評価中)
- ロパラメータ入力型プリプロセッサによる、簡単な六面体メッシュ生成
- 口応力・変位・温度の分布、プレス力、表面形状を評価できるポストプロセッサ
- □3種類のGM用光学ガラス、2種類の金型の物性データを搭載
 - ロガラス:OHARA L-BSL7、L-BAL42、L-TIM28
 - □金型 :超硬合金、SiC
- ロノートPCで計算可能


V-Glaceの特長②

- ロプレス制御
 - □金型変位制御
 - □金型変位制御(荷重上限付き) ····· ver.2で実装
 - □金型荷重制御(変位上限付き) ····· ver.2で実装
- 口加熱・冷却制御
 - □金型温度制御
 - ロ輻射加熱 ………… 別ソフトとの連携
 - ロエアフローによる冷却 …… 別ソフトとの連携


シミュレーション結果の例①

シミュレーション結果の例②

V-Glaceの動作環境

- ロハードウェア
 - □ CPU: Intel Core-iシリーズ、Xeonシリーズ、AMD Ryzenシリーズ
 - ロメモリ:16GB以上推奨
 - □ HDD:
 - ロシステム領域:約1GB(テンポラリ領域を含む)
 - □ ユーザ領域 :約200MB以上/1解析あたり
 - □ GPU:不問
 - ロネットワーク:不要
 - ロ モニタ:フルHD(1920x1080)以上推奨
 - □ USBポート:TypeA x3(プロテクトドングル用、USBバージョン不問、USBハブ使用可)
- ロソフトウェア
 - □ OS: Windows 10 Home/Pro (Win11は未検証)
 - □ Sentinel社(現THALES社)Sentinel HASP ランタイムのインストールが必要
- 口(ご参考:私の動作環境)
 - □ HP Pavilion Gaming 15 (ノートPC)
 - □ Core-i7 9750H, 2.6GHz, 6コア12スレッド
 - □ メモリ16GB、HDD1TB、15.6インチモニタ(1920x1080)

課題と今後の開発計画

ロソルバー開発

口荷重制御 2022中

ロパラメータサーベイ機能 2023~

口簡易計算モード (擬似軸対称計算) 2024~

□物性計測・実験

ロ構造緩和解析パラメータの同定 2023~

ロ弾性率の温度依存性の測定 2023~

ロコーティング劣化指標 2025~

口解析/可視化機能強化

□形状誤差表示 2023~

ロエア溜まり検出と可視化 2023~

ロ割れ(応力集中)検出と可視化 2024~

GMシミュレーションシステム「V-Glace」

V-Glace-Meshメッシャー

2022/03/08 第11回光学素子分科会 28

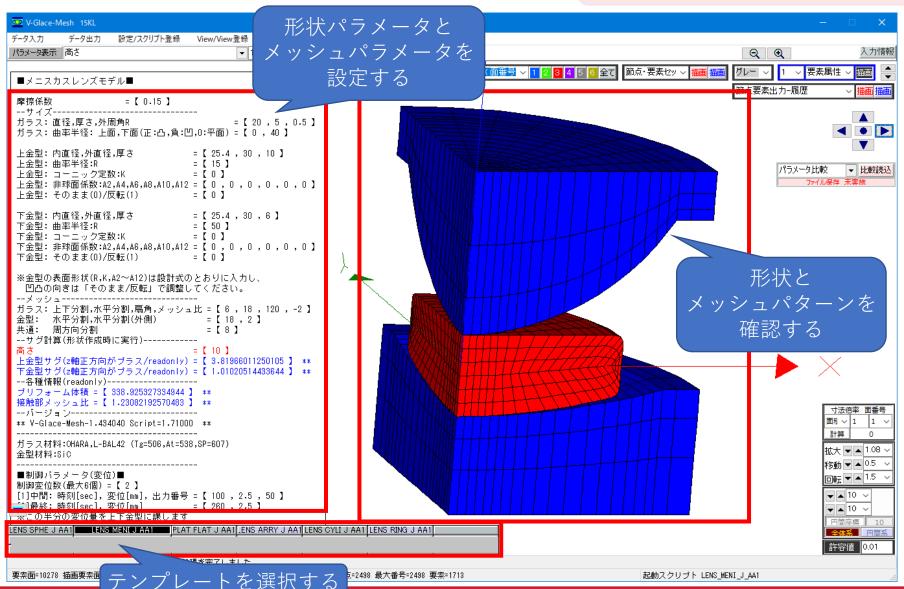
V-Glace-Meshの特長

- ロ六面体メッシュ生成専用ソフトウェア
- ロパラメータ入力型のメッシュ生成

ロ従来 : CADで形状を作成→メッシュソフトが分割する

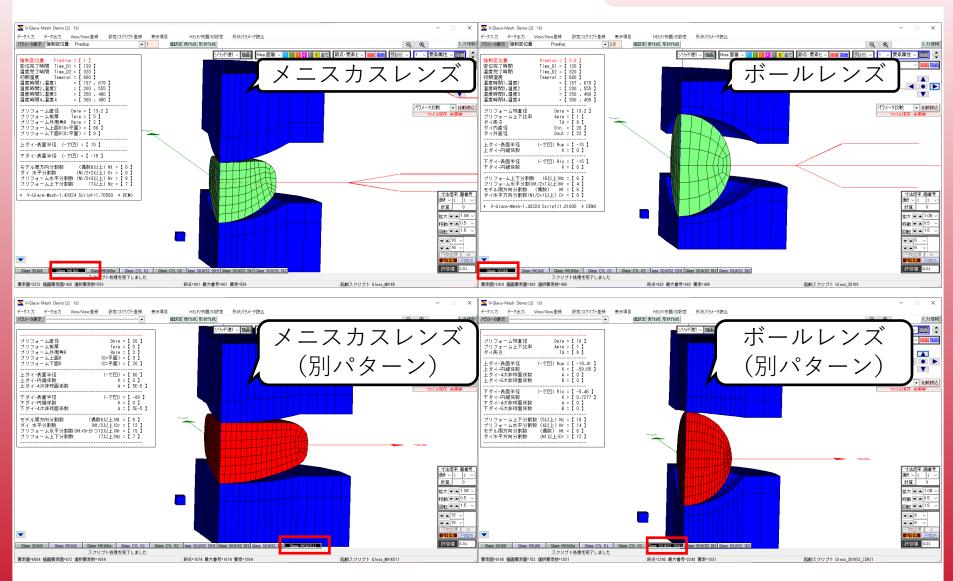
ロ本ソフト:分割済みテンプレートを選択

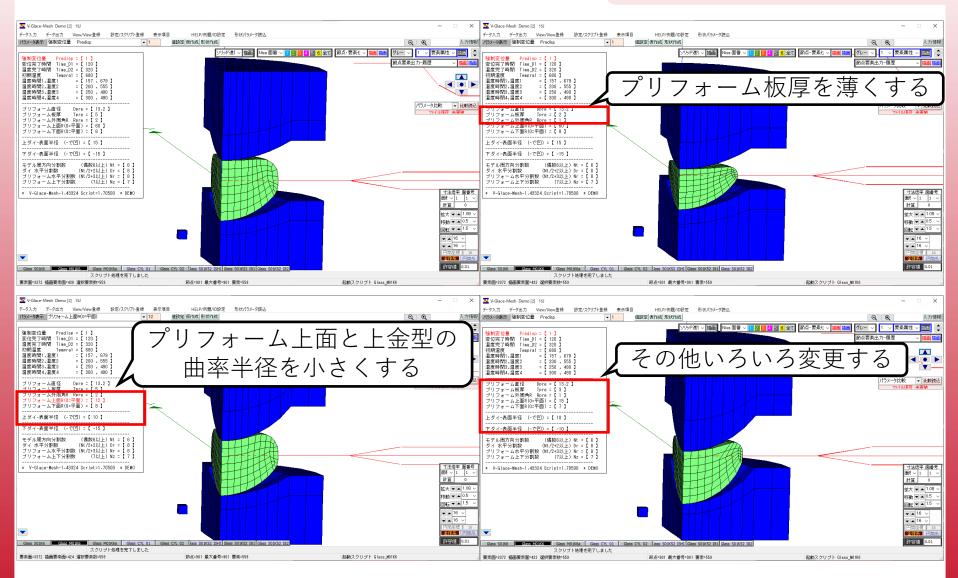
搭載された非球面多項式などにパラメータ・寸法などを適用する

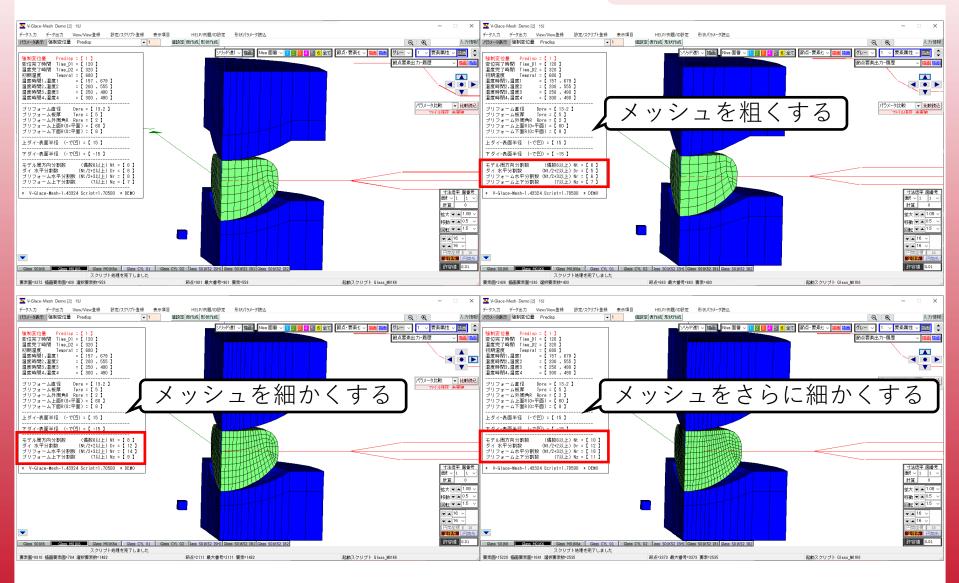

理想的な分割パターンを持つテンプレートを準備することで確実に、理想的な六面体メッシュ分割が得られる

□使用方法

- ロテンプレート毎に、寸法、表面形状の数式、メッシュ分割パターンなどが、 予め登録されている
- ロユーザは、テンプレートを選択し、サイズ・曲率・非球面多項式の係数や、 メッシュ分割数を入力する
- □自動的に六面体メッシュデータが生成される


V-Glace-Mesh画面


例:形状・メッシュパターンを選択


例:サイズを変更

例:メッシュ数を変更

GMシミュレーションシステム「V-Glace」

ガラス物性測定

2022/03/08 第11回光学素子分科会 34

測定項目と測定方法

		<u></u>
項目	測定方法	測定装置
ヤング率 ポアソン比	超音波パルスエコー法	弾性率測定装置
熱伝導率	パルス加熱法	Xeフラッシュアナライザ
比熱、熱膨張係数	示差熱分析、熱重量測定	熱分析装置
密度	比重測定	電子天秤
クリープパラメータ	圧縮試験	材料試験機を用いた実験
摩擦係数	リング圧縮試験	成形機を用いた実験
構造緩和パラメータ	密度測定(比重測定)	構造緩和測定装置と比重測定を 用いた実験

成形機

□型番

□武内製作所MVP-2010

ロプレス部

ロストローク:125mm

□最大加圧力:5kN

□加熱部

口方式:赤外線セラミックヒーター

□最高温度:約900℃

□真空部

□到達真空度:10Pa以下

ロチャンバー内径:約φ70mm

口その他

ロロガー機能

口徐冷速度制御機能

材料試験機(クリープ試験)

□試験内容

□弾塑性特性試験:5kN

ロクリープ試験:5kN

口応力緩和試験:5kN

口付着応力試験:500N

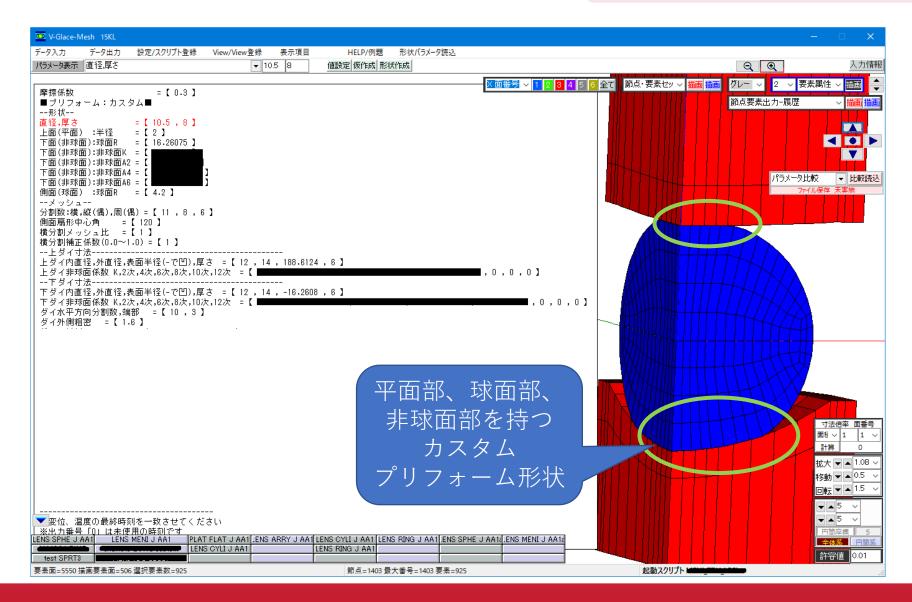
口その他

口加熱ユニット (電気炉)

構造緩和測定装置

- 口構造緩和測定のための試料を作成する
 - □2つの電気炉と、構造緩和現象の停止装置を持ち、構造緩和中 の任意の時刻の測定用試料を作成できる
 - 口構造緩和が停止(凍結)した試料を取り出し、物理量の測定を 行う
 - □温度変化に対する物理量のステップ応答を長時間測定することで、構造緩和の各パラメータを決定できる

事例紹介

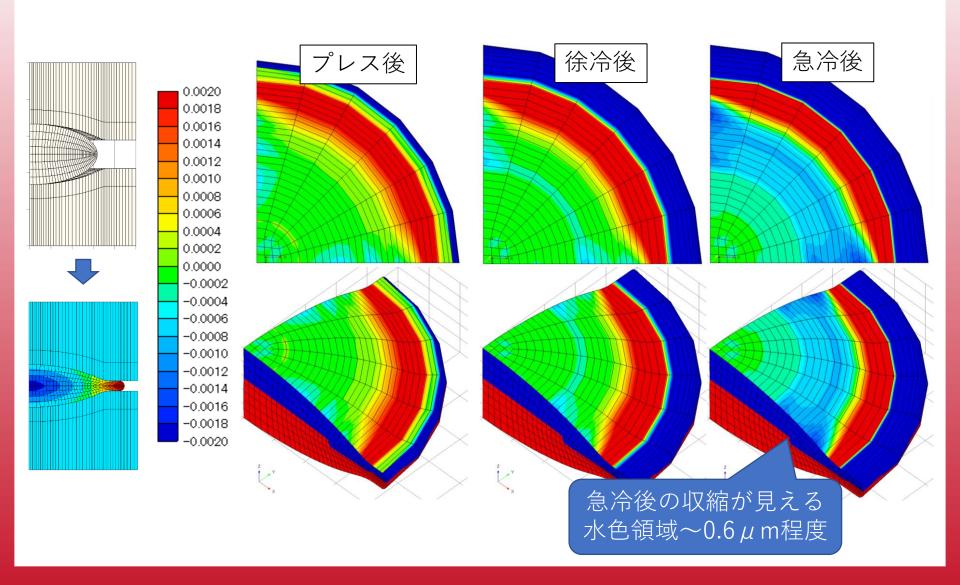

カスタム形状①

A社様ご提供データより

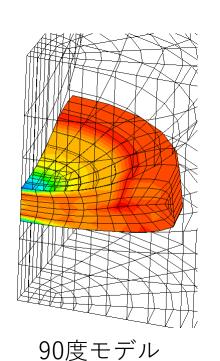
カスタム形状②

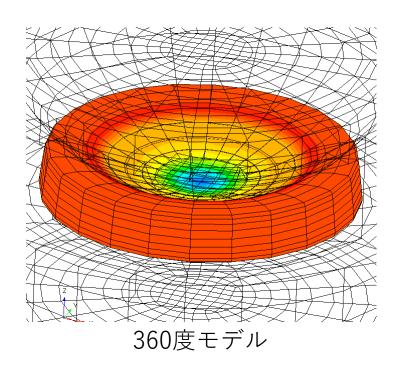
成形形状の評価①特定断面上での評価

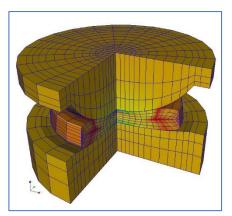
A社様ご提供データより

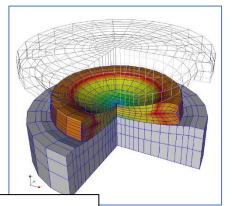

成形形状の評価②空間分布評価

A社様ご提供データより

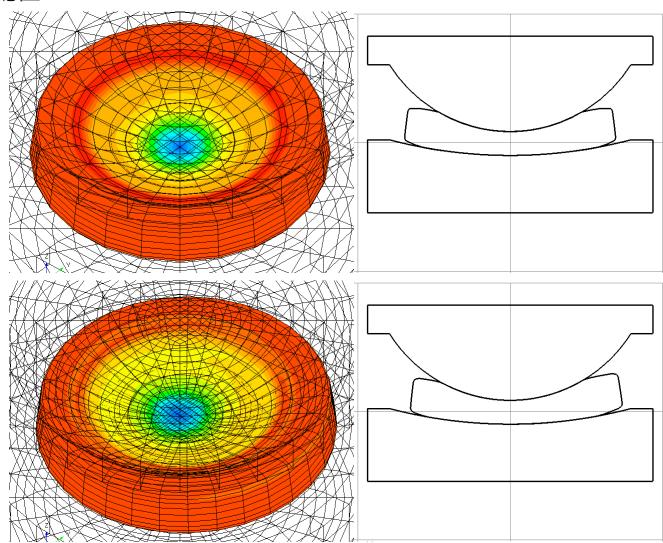

熱収縮の評価





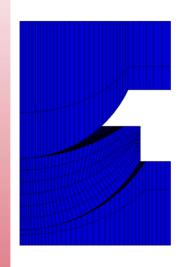

90度モデルと360度モデル

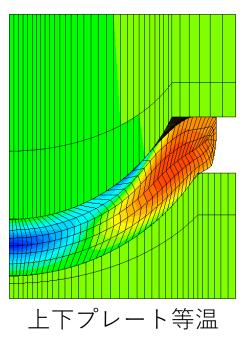
90度でも360度全周でも、同様に計算できる

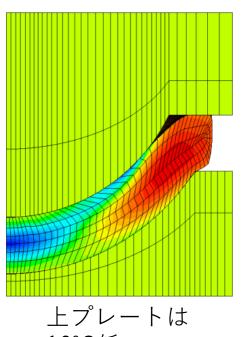

(参考)

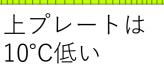
90度モデル:1368節点、 889要素、58分 (Core-i7 9750H) 360度モデル:4587節点、3553要素、約180分(Core-i7 10750H)

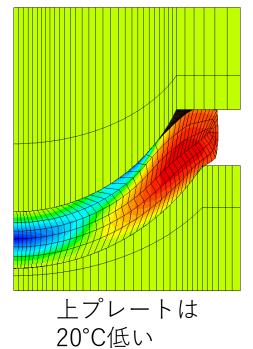
360度モデルと非軸対称条件の解析

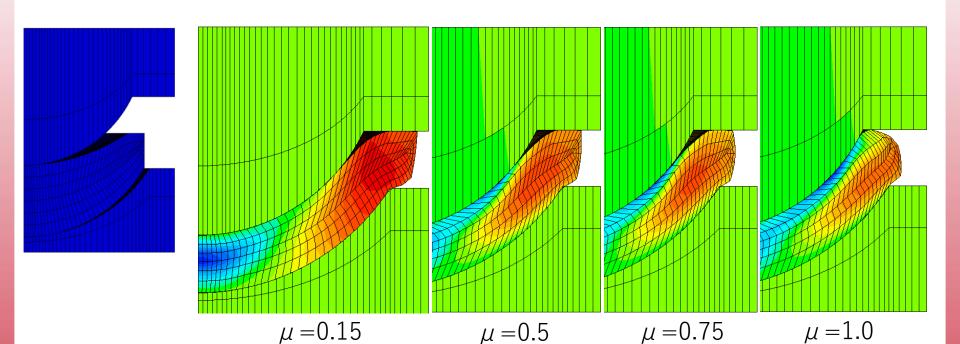



例:芯ずれ配置




温度条件サーベイ





温度差による ガラスの伸長の違いが 見える

摩擦係数サーベイ

摩擦係数サーベイは普通しないが、 コーティングの劣化⇒摩擦の増大 の影響などを推測できる

まとめ

2022/03/08 第11回光学素子分科会 49

まとめ

- ロガラス物性に特化した、材料構成則、構造緩和解析機能(仮想温度計算機能)を持つ、ガラス成形シミュレーションシステム「V-Glace」を開発した。
- ロガラス材料の物性値の測定実験を進めている。
- ロユーザ企業と協力しながら、評価・改良を進めている。
- 口商品化を開始する。

ご静聴ありがとうございました